India's First Commercial Manufacturer: Since 2020

(W): https://uhpcindia.com (E): info@uhpcindia.com (M): +91 91674 24144 +91 77100 04517

Ultra High Performance Concrete Material, Design and Application UHPC India Pvt. Ltd.

Dr. Satish Jain, Ph.D, PE, SE (USA) Managing Director, UHPC India Pvt. Ltd

ISKCON School – off

Mumbai:

Feb 2021

India's First Project

Concrete is the Wrong Choice of Word

Fibrous Composite

Ultra High Performance Fiber Reinforced Composite (UHPFRC)

Ultra High Performance Concrete (UHPC)

Ultra High Performance Fiber Reinforced Concrete (UHPFRC)

Reactive Powder Concrete (RPC)

UHPC – The Material

Ultra Green !! Ultra Strong !! Ultra Durable!!

Steel Fibers: 2% by Vol 0.2 mm (d) x 13 mm (L) Tensile Strength ~ 2800 MPa AR: 60 to 70

Robust Durability Performance

Longevity: 100 Year Maintenance Free Life Performance

Concrete T UHPC

- 50 % Weight reduction of structural elements
- Negligible/Low Reinforcing Steel
- •100 Year maintenance free service life
- Sleek and elegant Looks
- Ultra High wear and impact resistance

Structural Steel

Rapid development of strength:
> 60 MPa in 24 hours
> 100 MPa in 3 days

At a Fraction of Steel Cost, you get Steel Behavior

	Concrete	UHPC	Struc. Steel
Cu.m. Rate	Rs 7000	Rs 80,000 to 1,00,000	Rs 7,00,000
Ratio	1	11 to 15	100

Few of our Projects

84 Hollow UHPC Beams

GCC Mumbai

GCC Namaste, Mumbai

- Addition of a floor at the 13th Level in an existing hotel tower.
- The floor needed to be as light as possible.

Floor Plan

1200mm deep Light weight cast-in-place UHPC Girder

UHP

Bungalow Project- Tirupati

Extension of Existing Slab

• The cantilever extension must be lighter in weight

Extended Slab

(SDC Dev Aangan, Mumbai).

Column Splicing on existing building

• Required Development length in UHPC < 15 × bar dia.

New Column Rebar

Existing Column Rebar UHPC Column starter

UHP

RC-UHPC Composite Columns

- Currently tested for predominantly Gravity Loaded Columns.
- First Set of Tests Successful

Tested at IIT Hyderabad

Retrofit for Additional Parking – Mumbai

• Existing Beams strengthened to support 3 Level Steel Parking Structure.

Motibaug C2, Mumbai

UHPC girder (800 mm deep)

• Longer Spans – Flexible space option at retail levels.

Upcoming Jewellery Store, Vellore

Proposed **precast** UHPC girder

- Longer Spans Flexible space option.
- Super fast construction Pre-casting.
- Floor-to-Floor height remains the same.

Dry Mix Jumbo Bags UHPC Dry Premix in Jumbo bags

UHP

Ready-Mix UHPC UHPC wet-mix in ready-mix concrete trucks

Precast Long Span UHPC Girders Composite girders for bridges and buildings

Busting Myths

Myth 1: UHPC Elements Needs to be Precast in a Facility

UHPC Premix manufactured in factory controlled condition

Batched Ice or Iced water Weighed Steel Fibers

Mixing with High Energy mixer

Wet UHPC mixed at site

UHP

Myth 2: UHPC Cannot be Cast-in-Place

UHPC poured in place through bucket

Shuttering for UHPC girders (19.0 m span) at 13th floor level supported over props

Myth 3: UHPC Cannot be Pumped

UHPC Pumping

UHPC Pumping at 13th floor of an existing Hotel building in Mira road, Mumbai

Myth 4: UHPC has to be Steam Cured

Normal water curing S Site mixing S Strength achieved (28 days)= 186 MPa with a standard deviation of 8 MPa

Curing using curing compound Site mixing Strength achieved (3 days) = 117 MPa

Myth 5: UHPC has to be poured within 30 minutes

A Good UHPC is workable for long hours

Myth 6: Flexural Strength is Sufficient to Define Tensile Property

Two most important parameters to define tensile strength of UHPC.

Credits: FHWA

UHPC

Myth 7: Only French Code Can be Used for Design

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

— SWISS STANDARD – SIA 2052 - 2016

ASTM C1856-17

Recommendation:

Ultra-High Performance Fibre Reinforced Cement-based composites (UHPFRC)

Construction material, dimensioning und application

English translation of the Technical Leaflet SIA 2052 with adaptations

For internal use

MCS-EPFL Lausanne, Switzerland, 17 April 2016

Adress: EPFL-Swiss Federal Institute of Technology MCS-Maintenance, construction and safety of structures Station 18 CH-1015 Lausanne, Switzerland

Designation: C1856/C1856M - 17

Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete¹

This standard is issued under the fixed designation C1856/C1856M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

ACI 239C - Upcoming

El-Helou, R. G., & Graybeal, B. A. (2022). Shear Behavior of Ultrahigh-Performance Concrete Pre-tensioned Bridge Girders. *Journal of Structural Engineering*, 148(4), 04022017.

- UHPC has a fine granular structure. Hence, no significant aggregate interlocking.
- Negligible advantage from Concrete/Prestressing

Credits: FHWA

Shear Strength of UHPC

- UHPFRC depicts extraordinarily high Shear Strength
- For most common applications, Shear rebar is not Required

$$V_{Rd} = V_{Rd,U} + V_{Rd,s}$$

with :

$$V_{Rd,U} = \frac{b_w \cdot z \cdot 0,5(f_{Uted} + f_{Utud})}{\tan \alpha}$$

Approximate Shear Strength of <u>UHPFRC:</u> For α = 30 degrees, Design Elastic Strength = 5 MPa Design Ultimate Strength = 6 MPa

$$V_{Rd,s} = \frac{A_{sw}}{s} \cdot z \cdot f_{sd} \cdot (\cot \alpha + \cot \beta) \sin \beta$$

Shear Strength of UHPC = 9.5 MPa

t; time in days

(R)

Creep

Minimum Clear Cover to Post Tensioning Ducts

IRC 112-2020

75mm

Considering durability, bond and crack width requirements, irrespective of the exposure conditions and duct dia.

French Code

Duct Dia Clear cover ~ Duct Dia

Upcoming Bridge Projects Bridge Girder Size Comparison

Bridge Girder , 15m Span vs 15m Span

~72% reduction in the Girder Self-weight.

Bridge Girder , 30m Span vs 30m Span

~60% reduction in the Girder Self-weight.

Bridge Girder , 30m Span vs 42m Span

UHPC

~32% reduction in the number of piers in a major bridge (780m).

Bridge Girder, 30m Span vs 60m Span

~50% increase in the Girder Self-weight even with double span.

~50% reduction in the number of piers in a major bridge (780m).

Bridge Girder , 30m Span vs 70m Span

~43% reduction in the number of piers in a major bridge (420m).

Now Possible to Eliminate Concrete Box Girders for Longer Spans (60 to 70m)

If Structural Steel I-Girders are Possible UHPC I-Girders are Possible as well

	Steel Plate Girder	UHPC I Girder	Difference
Span	60m	60m	
Girder Self-Weight	120 MT	120 MT	Similar
Girder Span-to-Depth Ratio	22.2	25	
Erected Cost	1.4 Cr.	0.8 Cr.	43% Savings

Misc. Infrastructure Application around the World

Other Applications in Bridge Engineering

Enhancing Strength and Durability of a Deteriorated Pier with UHPC Cover **Expansion Joints at Deck Replaced** with UHPC Link Slab

Longitudinal Joints Repair / Filling with field cast UHPC

Credits: FHWA

UHPC wearing coat over Bridge deck

UHP

Pedestrian Bridges around the World

(R)

Precast Circular - MORTH

UHPC India Pvt. Ltd. is expanding with

25 to 30 Micro UHPC Precast Facilities around India

2022-23

With Precasting and Infra Channel Partners

Build with your OWN UHPC!!

(W): <u>https://uhpcindia.com</u>

(E): <u>info@uhpcindia.com</u>

(M): +91 91674 24144 +91 77100 04517

THANK YOU !! We Look Forward to create Value for You!!

MADE IN INDIA UHPC

