ULTRA-HIGH PERFORMANCE FIBER REINFORCED CONCRETE

hànanananananananan

Concrete Technology Break Through

- One of the biggest breakthrough in 21st century is the invention of ultra-high-performance fiber reinforced concrete (UHPFRC)
 - Concrete Grade 150/165 above
 - With usable structural ultimate tensile strength (> 8 MPa) and ultimate flexural strength more than 30 MPa.
 - at least 4-6 times stronger than normal concrete (in compressive strength)
 - at least 100 times more **durable** than conventional concrete
 - Longer service and design life
 - Lower carbon footprint

How UHPFRC Compare to Reinforced Concrete?

o Reinforced Concrete

- Aggregate up to 20mm
- Mainly using steel bar as reinforcement
- Steel bar is compulsory
- Concrete cover detailing rules needed
- Less workable in slender element
- Honeycomb possible

○ UHPFRC

- Eliminate aggregate
- Mainly using steel fiber as reinforcement
- Steel bar is optional
- Concrete cover is not compulsory
- Highly flowable and mouldable
- Honeycomb almost impossible

Evolution of Concrete

4

How **UHPC** Compare to **Steel & Concrete**?

(Force Vs Displacement)

3-Point Test Curves _ According to NF P18-470 (2016)

Mid-Span Deflection (mm)

CT Scan on core sample

Fiber QTY = 158kg/m³ (2% vol.) 34 mil fibers; Total Length = 643 km/m³

12 cored samples

The Advantage of using UHPFRC

UHPFRC doesn't shrink and minimal creep

- o Cost Saving;
- Span up to 110m, thus reduce foundation cost significantly
- Cheaper & better solution against Steel Structures
- Lighter and thin sections
- Extremely Durable due to ultra denseness of concrete
- Better Bridge Material compare to conventional (Factory Product)
- Easier Handling & Transport (Lower Tonnage Crane Required)
- Shortened Construction Period. (more than 20%)
- **O SUSTAINABLE ASSET**
- Value for MONEY!!!

UHPFRC-ESG Compliance

With lower Carbon foot print, UHPFRC is ESG Complying Concrete application

- E- Environmental friendly since lower concrete quantities are consumed with longer service life
- S- Social benefits since lower project Duration
- G- Good Governance since the product is made in factory controlled environment ensuring highest degree of Quality and following best industry practices

Structural Standards (NF P 18-710, 2016)

16 April 2016 Classification index: P 19-71	French standard	AVRIL 2016	
ISSN 0335-3931			
P 18-710	NE		
16 April 2016		h standard	Frenc
on index: P 18-710	Classification		
Construction and			
10.30; 91.080.40 In of	ICS: 91.010 to Eurocode 2 — Design	National addition t	
10.30; 91.080.40 in of tra-High (UHPFRC) se, linits, materials, mechanical strength restressing steels, durability, stress analysis ength, strain, faigue life, cracking (tracturing) s, covering, beams: supports, floors, slabs rification.	ICS: 91.010 to Eurocode 2 — Design es: specific rules for Ultr -Reinforced Concrete (U	National addition to concrete structure Performance Fibre Por: DURA TECHNOLOGY SON BIO Clert: 80046770 Commande : N20170818-319422-T le: 18008/2017 a 05:54	DOCUMENT PROTÉGÉ PAR LE DROIT D'AUTEUR e reproduction miservée, Sauf len différente, succuse partie de losalen ne paul des reprodute
10.30; 91.080.40 In of tra-High (UHPFRC) ss, limits, materials, mechanical strength restressing steels, durability, stress arrangens ength, strain, fatigue life, cracking (tracturing) t, covering, beams: supports, floors, slabs rification.	ICS: 91.010 to Eurocode 2 — Design es: specific rules for Ultr -Reinforced Concrete (U structures, computation, stresses, fexing, shear strength, tensile strengt anchorages, armatures, distance, co partitions, columns, foundations, verifice	National addition to concrete structure Performance Fibre Performance Fibre Clert: 80046770 Commande : N20170818-319422-T Le: 18/08/2017 a 05:54	DOCUMENT PROTĚGĚ PAR LE DROIT D'AUTEUR reproduction néservés, Sauf a différente, sacuse partie de Doutes no peut éres reprodute saus queden trome que de r sucun precédé, diectronique igue, y comprés la photosopie reflitre, sans accord formal.
10.30; 91.080.40 In of tra-High (UHPFRC) es, linits, materials, mechanical strength restressing steels, durability, stress analysis ength, strain, fatigue life, cracking (tracturing) , covering, beame: supports, floors, slabs rification.	ICS: 91.010 to Eurocode 2 — Design es: specific rules for Ultr -Reinforced Concrete (U structures, computation, stresses, deformation, reinforcing steels, prest flexing, shear strength, tensile strengt anchorages, armatures, distance, co partitions, columns, foundations, verifice Modifications Corrections	National addition to concrete structure structure performance Fibre Performance Fibre Por: DURA TECHNOLOGY SON BIO Cient: 80046770 Commande: N20170818-319422-7 Ic: 18/08/2017 a 05:54 Diffusé avec l'autorisation de l'éditeur Distributed under licence of the publisher	DOCUMENT PROTÉGÉ PAR LE DROIT D'AUTEUR e reproduction réservée, Sauf fon différente, aucuse partie de fobilin no puis fibre reproduite e seus qualque forme que ce er aucun prodoté, directornéque nique, y cenyoris le photecospie emiline, sens accord Brentel, r i Boem Infe matche de Pressensé Plaine Saint-Danis Gudox ti 42 ng 44

Porosity / Capillary Absorption (NF P18-459)

POROSITY, APPARENT DENSITY AND CAPILLARY ABSORPTION IN ACCORDANCE WITH NF P 18-459

Property	Typical requirements for waterproof concrete *	Typical performances of waterproof concrete*	DURA® mix**
Porosity (% by volume)	Porosity < 10%	8%	2.3%
Apparent dry density (kg/m ³)	N.A.	N.A.	2440
Water absorption coefficient (g/m ²)	N.A.	N.A.	3.8 ***

* Reference: Kuala Lumpur Metro Line 1 and Line 2, waterproofing concrete (treated with pore blockers) for underground works;

**Average of three specimens;

***After 30 minutes of immersion in water

Chloride Migration Coefficient (XP P 18 462)

The results are reported in the following table against typical requirements for concrete exhibiting very low chloride ion penetrability.

NON-STEADY STATE CHLORIDE MIGRATION COEFFICIENT IN CONCRETE IN ACCORDANCE WITH XP P 18 46

Typical requirements for		ypical performances o	Typical requirements for			
concrete with very low	concrete with very low		Ultra-High Performance	DURA® mix**		
chloride ion penetrability*	chloride ion penetrability*		chloride ion penetrability*		Concrete	
D _{NSS} < 7.5 x 10 ⁻¹² m ² /s		5 x 10 ⁻¹² m²/s		D _{NSS} < 1.0 x 10 ⁻¹³ m ² /s	0.51 x 10 ⁻¹³ m²/s	

* Reference: Kuala Lumpur Metro Line 1 and Line 2, chloride resistant concrete for underground works;

**Average of three specimens;

Water Absorption (BS 1881 – 121)

The results are reported in the following table against typical requirements for waterproof concrete treated with pore blockers.

WATER ABSORPTION IN ACCORDANCE WITH BS 1881-121					
Typical requirements for waterproof concrete *	Typical performances of waterproof concrete*	DURA® mix**			
1% maximum absorption after 30' immersion in water for concrete aged 7 days	0.9%	0.34%			

* Reference: Kuala Lumpur Metro Line 1 and Line 2, waterproofing concrete (treated with pore blockers) for underground works; **Average of three specimens;

Water Penetration (BS EN 12390-8)

The results are reported in the following table against typical requirements for waterproof concrete treated with pore blockers.

DEPTH OF PENETRATION OF WATER UNDER	R PRESSURE IN ACCORDANCE	WITH BS EN 12390-8
Typical requirements for waterproof concrete treated with pore blockers*	Typical performances of waterproof concrete*	DURA® mix**
Depth of penetration of water < 15 mm	10 mm	2 mm

* Reference: Kuala Lumpur Metro Line 1 and Line 2, waterproofing concrete (treated with pore blockers) for underground works; **Average of five specimens;

RCPT (ASTM C1202-17)

Rapid Chloride Penetration Test (RCPT) in accordance with ASTM C1202-17

The results are reported in the following table against typical requirements for concrete exhibiting very low chloride ion penetrability.

RAPID CHLORIDE PENETRATION TEST IN ACCORDANCE WITH ASTM C1202-17					
Typical requirements for concrete	Typical performances of concrete				
with very low chloride ion	with very low chloride ion	DURA® mix**			
penetrability*	penetrability*				
Charged Passed (Coulombs) < 1,000	100 - 500	35			

* Reference: Kuala Lumpur Metro Line 1 and Line 2, chloride resistant concrete for underground works;

**Average of three specimens;

Batu 6 Bridge, Single Span 100m PCI 2016 Design Award – Best International Transportation Structure

Mixing of Concrete

Pouring of Concrete

Match Casting

Bridge 3: 25m span come with 2 segments per beam

Transportation Using Normal 12m Lorry

Unloading using 20t all terrain crane

1

WOODWO

Unload Segments at Site using 45t crane

NO S OF THE PARTY

45t mobile crane

PAH NO

17.6m wide RC deck Supported by 3 beams per span

A COMPANY

Fully Integral bridge without expansion joint

5.9m

5.9m

Integral bridge with one expansion joint

- Establishment for dedicated Specialized casting yard at Pune and is fully operational from 01.11.2021
- Production set up is with facility of UHPFRC 2 Nos of concrete plant of 8 Cum batch capacity each.
- 1 Nos 1.5 cum mobile UHPFRC production plant is operational
- Specialized Quality Control laboratory established.
- Trained Design & Development team for UHPC projects is in place along with Association of HSS Engineering, Malaysia and Indian Associate Designer SPA, Mumbai

Introduction of UHPFRC Bridge Construction Technique in India

- We LONGSPAN STRUCTURES PVT LTD. have done Technology Transfer Arrangements with DURA TECHNOLOGY SDN. BHD. for UHPFRC applications in INDIA and SAARC Nations.
- Proposal for construction of first UHPFRC bridge in India was approved by MoRT&H, Govt of India through National Panel of Experts Committee.
- Design and Drawings are approved by IIT, Mumbai and bridge is successfully competed and opened for traffic near Latur, Maharashtra where we are EPC Contractor.
- Original proposal was of 112m bridge length with span arrangements as 19.5m x 2 Nos and 24m x 3 Nos
- Present proposal is UHPFRC superstructure with 2 Nos of 56m span

Original GAD

Present UHPFRC Superstructure GAD

Conventional Vs UHPC (Tender GAD) Vs UHPC (Designed)

Sr No	Concrete Quantity	UOM	Conventional concrete superstructure (RCC Composite I-Girder)	DURA superstructure (UHPC) U Girder - 4 Nos	DURA superstructure (UHPC)U Girder - 3 Nos	% reduction in scope
1	Piles(1.2m dia.)	Nos	56 nos(596 RM)	24 nos(242 RM)	24 nos(242 RM)	57%
2	2 Pilecap	Cum	789	434	434	45%
3	PCC below pilecap piers	Cum	40	21	21	48%
2	(intermediate)	Cum	100	30	30	70%
5	Abutement pier	Cum	112	9.27	9.27	91%
e	5 piercap	Cum	181	72	72	60%
7	Pedestal	Nos	60	16	12	80%
8	Bearings	Nos	60	16	12	80%
ç	9 Superstructure	Cum	1070	751	661.4	38%

Inaugural Meeting for Introduction of UHPFRC Technology

NPE Visit

STAGE 1 (b) : ARRIVAL OF SEGMENT ON SITE

STAGE 2 : ERECTION OF SEGMENTS ON STAGING

STAGE 3 : PRE STRESSING OF SEGMENTS

Completed Photo of Bridge

Inauguration of Bridge by Hon'ble Minister Shri Nitinji Gadkari on 25th November 2021

Projects Currently Execution

- Major Creek Bridge of 182.50 length at Mangalore Karnataka with UHPC Span arrangement (50 m + 65 m + 67.50 m)
- 2 Bridges with single spans of 52 m on the prestigious Samruddhi Mahamarg for Canal and highway crossing.
- Viaducts with UHPC spans 72m on NH17 at Kashedi Ghat Section
- 9 Bridges including record breaking 118 m span bridge for M/s R.K. Chavan Infrastructure Pvt Ltd.
- 1 Major Bridge and Minor Bridge awarded to us by M/s A.C. Shaikh Constructions Pvt. Ltd.
- o 1 Major Bridge and 2 Minor Bridges along Mumbai Goa (NH66) National Highway
- Successfully completed Repair and Rehabitation of rigid pavement damaged panels 10 no's on trial on Mumbai-Pune Expressway, Maharashtra

Total Cumulative orders of	- 8000
cum (in hand)	

Total Cumulative orders of 21 Bridges (in hand)

Works in progrss

Ongoing Projects in hand								
Sr No	Location	Client	EPC Contractor	Length of Bridge	Type of Girder	Girder Length (m)	Total No's of Girders	Current Stage
Kullur Br	dge, Manglore	27-						
	Manglore, Karnataka	NHAI	SDPL		UBG 2250	48.625	8	
	Manglore, Karnataka	NHAI	SDPL	182.5 m	UBG 3000	63.85	8	
	Manglore, Karnataka	NHAI	SDPL		UBG 3000	66.85	8	
3 Additio	nal Bridges on Mumbai Goa Highway						a	
	Mahad, Maharashtra	PWD (NH Division) and MoRT&H	SDPL	35 m	TBG 1500	33.9	5	Completed
	Mahad, Maharashtra	PWD (NH Division) and MoRT&H	SDPL	105 m	TBG 1500	35.0	15	
	Mahad, Maharashtra	PWD (NH Division) and MoRT&H	SDPL	35 m	TBG 1500	33.9	5	
Beed - Pa	irbhan <mark>i</mark> - Aundha Nagnath & Akola - Ako	t Stretch						
	Beed, Maharashtra	PWD (NH Division) and MoRT&H	A.C. Shaikh	60 m	TBG 1500	30	10	50 % Completed
	Beed, Maharashtra	PWD (NH Division) and MoRT&H	A.C. Shaikh	40 m	TBG 1500	37	5	
1	Akola, Maharashtra	PWD (NH Division) and MoRT&H	A.C. Shaikh	105 m	TBG 1500	37	15	
Mumbai	- Goa Highway - New NH 66 (Greenfeild) - Pkg 3						
	Kashedi Ghat, Maharashtra	PWD (NH Division) and MoRT&H	SDPL	71.2 m	UBG 3000	71.2	6	
1	Kashedi Ghat, Maharashtra	PWD (NH Division) and MoRT&H	SDPL	71.2 m	UBG 3000	71.2	6	
Palkhi M	arg -Dharampuri - Lonanad- Pkg 5	4	14					
10	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	60 m	UBG 2250	57.5	8	
1	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	60 m	UBG 2250	57.5	6	
12	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	102 m	UBG 4000	101.6	6	
1	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	35 m	TBG 1500	34	10	
14	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	35 m	TBG 1500	34	10	
1	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	35 m	TBG 1500	34	12	
10	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	35 m	TBG 1500	34	36	
1	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	40 m	TBG 1500	37.5	10	
18	Dharampuri bypass, Maharashtra	NHAI	R.K. Chavan	32 m	TBG 1500	31.6	16	
Samrudd	hi Mahamarg - Mumbai - Nagpur 8 Lane	Expressway		_		~		
19	Nashik, Maharashtra	MSRDC	Raj Infra	52 m	UBG 2250	51.8	8	Casting in Progress
20	Nashik, Maharashtra	MSRDC	Raj Infra	52 m	UBG 2250	51.8	8	Casting in Progress
Taloja Creek Bridge								
2:	Mumbai, Maharashtra	PWD, Maharashtra	SDPL	66 m	TBG 1500	32.6	6	Casting in Progress

Original GAD SPAN ARRAGEMENT - 16.8 + 16.8 + 32.5 + 32.5 + 32.5 + 32.5 + 16.8

Present UHPFRC Superstructure GAD

Specialised UHPC Production Plant

@ Kiwale, Pune

T-Beam (BT1500) Casting in progress

U-Beam (UBG2250) Casting in progress

SAMRUDDHI EXPRESSWAY BRIDGE SUPERSTRUCTURE CASTING

Finished Product

BT 1500 – Mumbai Goa Highway

UBG 2250 - For 50 m Span at Phalguni River (Kullur Bridge)

Bridges at Samruddhi Mahamarg (Mumbai to Nagpur)

Bridge on NH66 (Mumbai Goa) Highway

Taloja Creek Bridge (Sion Panvel Highway) – Mumbai.

Standardization of UHPFRC products

- Span wise and bridge length & foundation type wise the design standardization will optimise the design costs and approval process timelines.
- Indian Standards and specifications for UHPFRC designs, production and Implementation
 - The Codal provisions for Ingredient material specifications, design procedures, manufacture standards will enable Indian designers for consideration of technology for ease of acceptance and implementation
- Incorporation of specifications and Rates in State/Central schedule of rates
 - Availability of UHPFRC specifications and Applicable rates will help the estimators for considering the subject technology implementation in DPR and Detailed estimate.

• Carbon Credit

- UHPFRC Technology implementation results in to lower Carbon footprint
- Mechanism shall be established for manufacturers to avail the carbon credit to make the products most economically viable
- Certification of the UHPFRC production facilities
 - At Govt Authority level, the UHPFRC production facility/Precast yard certification facility and implementation shall be in place for ensuring more confidence among the end users for the products.
- Periodic Audits and authorised Renewals to Certified UHPFRC precast Facilities
 - Will ensure the conformity to standards and specification implementations in regards to production and quality products.

• Major Ingredient Material is Steel Fibre

- Authority Support is required to insistence to Steel Manufacturers for manufacture and supply
 of required Steel fibres.
- Currently procuring from our own Indian market, but manufacture capabilities are less.
- Looking into future demand of larger scale, steel fibre supply from in-house sources in India are required.

• Relaxation in Taxes to Major material procurement

 In the Initial stage till the technology gets fully martialized, to minimize cost of production & supply ,the Tax relaxation of major materials such as Steel fibre and Silica fume will support

Research & Development

- With specialized UHPFRC production facility and Test laboratory available with Manufacturer, MorT&H, industry players and academia's can jointly work together for undertaking continuous improvement process and exploration of possibilities in other applications
- UHPFRC Production facility establishment support
 - The Capex Support for establishment of various production facilities across the country will support in fulfilment of supply demands

• Trainings

 Joint training programmes will support in making the pool of skilled personals for design, manufacture and execution.

Thank You LONGSPAN LONGSPAN STRUCTURES PYT LTD